mirror of
https://github.com/cmclark00/retro-imager.git
synced 2025-05-19 08:25:21 +01:00
Qt/QML edition
This commit is contained in:
commit
d7b361ba44
2168 changed files with 721948 additions and 0 deletions
209
dependencies/zlib-1.2.11/doc/algorithm.txt
vendored
Normal file
209
dependencies/zlib-1.2.11/doc/algorithm.txt
vendored
Normal file
|
@ -0,0 +1,209 @@
|
|||
1. Compression algorithm (deflate)
|
||||
|
||||
The deflation algorithm used by gzip (also zip and zlib) is a variation of
|
||||
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
|
||||
the input data. The second occurrence of a string is replaced by a
|
||||
pointer to the previous string, in the form of a pair (distance,
|
||||
length). Distances are limited to 32K bytes, and lengths are limited
|
||||
to 258 bytes. When a string does not occur anywhere in the previous
|
||||
32K bytes, it is emitted as a sequence of literal bytes. (In this
|
||||
description, `string' must be taken as an arbitrary sequence of bytes,
|
||||
and is not restricted to printable characters.)
|
||||
|
||||
Literals or match lengths are compressed with one Huffman tree, and
|
||||
match distances are compressed with another tree. The trees are stored
|
||||
in a compact form at the start of each block. The blocks can have any
|
||||
size (except that the compressed data for one block must fit in
|
||||
available memory). A block is terminated when deflate() determines that
|
||||
it would be useful to start another block with fresh trees. (This is
|
||||
somewhat similar to the behavior of LZW-based _compress_.)
|
||||
|
||||
Duplicated strings are found using a hash table. All input strings of
|
||||
length 3 are inserted in the hash table. A hash index is computed for
|
||||
the next 3 bytes. If the hash chain for this index is not empty, all
|
||||
strings in the chain are compared with the current input string, and
|
||||
the longest match is selected.
|
||||
|
||||
The hash chains are searched starting with the most recent strings, to
|
||||
favor small distances and thus take advantage of the Huffman encoding.
|
||||
The hash chains are singly linked. There are no deletions from the
|
||||
hash chains, the algorithm simply discards matches that are too old.
|
||||
|
||||
To avoid a worst-case situation, very long hash chains are arbitrarily
|
||||
truncated at a certain length, determined by a runtime option (level
|
||||
parameter of deflateInit). So deflate() does not always find the longest
|
||||
possible match but generally finds a match which is long enough.
|
||||
|
||||
deflate() also defers the selection of matches with a lazy evaluation
|
||||
mechanism. After a match of length N has been found, deflate() searches for
|
||||
a longer match at the next input byte. If a longer match is found, the
|
||||
previous match is truncated to a length of one (thus producing a single
|
||||
literal byte) and the process of lazy evaluation begins again. Otherwise,
|
||||
the original match is kept, and the next match search is attempted only N
|
||||
steps later.
|
||||
|
||||
The lazy match evaluation is also subject to a runtime parameter. If
|
||||
the current match is long enough, deflate() reduces the search for a longer
|
||||
match, thus speeding up the whole process. If compression ratio is more
|
||||
important than speed, deflate() attempts a complete second search even if
|
||||
the first match is already long enough.
|
||||
|
||||
The lazy match evaluation is not performed for the fastest compression
|
||||
modes (level parameter 1 to 3). For these fast modes, new strings
|
||||
are inserted in the hash table only when no match was found, or
|
||||
when the match is not too long. This degrades the compression ratio
|
||||
but saves time since there are both fewer insertions and fewer searches.
|
||||
|
||||
|
||||
2. Decompression algorithm (inflate)
|
||||
|
||||
2.1 Introduction
|
||||
|
||||
The key question is how to represent a Huffman code (or any prefix code) so
|
||||
that you can decode fast. The most important characteristic is that shorter
|
||||
codes are much more common than longer codes, so pay attention to decoding the
|
||||
short codes fast, and let the long codes take longer to decode.
|
||||
|
||||
inflate() sets up a first level table that covers some number of bits of
|
||||
input less than the length of longest code. It gets that many bits from the
|
||||
stream, and looks it up in the table. The table will tell if the next
|
||||
code is that many bits or less and how many, and if it is, it will tell
|
||||
the value, else it will point to the next level table for which inflate()
|
||||
grabs more bits and tries to decode a longer code.
|
||||
|
||||
How many bits to make the first lookup is a tradeoff between the time it
|
||||
takes to decode and the time it takes to build the table. If building the
|
||||
table took no time (and if you had infinite memory), then there would only
|
||||
be a first level table to cover all the way to the longest code. However,
|
||||
building the table ends up taking a lot longer for more bits since short
|
||||
codes are replicated many times in such a table. What inflate() does is
|
||||
simply to make the number of bits in the first table a variable, and then
|
||||
to set that variable for the maximum speed.
|
||||
|
||||
For inflate, which has 286 possible codes for the literal/length tree, the size
|
||||
of the first table is nine bits. Also the distance trees have 30 possible
|
||||
values, and the size of the first table is six bits. Note that for each of
|
||||
those cases, the table ended up one bit longer than the ``average'' code
|
||||
length, i.e. the code length of an approximately flat code which would be a
|
||||
little more than eight bits for 286 symbols and a little less than five bits
|
||||
for 30 symbols.
|
||||
|
||||
|
||||
2.2 More details on the inflate table lookup
|
||||
|
||||
Ok, you want to know what this cleverly obfuscated inflate tree actually
|
||||
looks like. You are correct that it's not a Huffman tree. It is simply a
|
||||
lookup table for the first, let's say, nine bits of a Huffman symbol. The
|
||||
symbol could be as short as one bit or as long as 15 bits. If a particular
|
||||
symbol is shorter than nine bits, then that symbol's translation is duplicated
|
||||
in all those entries that start with that symbol's bits. For example, if the
|
||||
symbol is four bits, then it's duplicated 32 times in a nine-bit table. If a
|
||||
symbol is nine bits long, it appears in the table once.
|
||||
|
||||
If the symbol is longer than nine bits, then that entry in the table points
|
||||
to another similar table for the remaining bits. Again, there are duplicated
|
||||
entries as needed. The idea is that most of the time the symbol will be short
|
||||
and there will only be one table look up. (That's whole idea behind data
|
||||
compression in the first place.) For the less frequent long symbols, there
|
||||
will be two lookups. If you had a compression method with really long
|
||||
symbols, you could have as many levels of lookups as is efficient. For
|
||||
inflate, two is enough.
|
||||
|
||||
So a table entry either points to another table (in which case nine bits in
|
||||
the above example are gobbled), or it contains the translation for the symbol
|
||||
and the number of bits to gobble. Then you start again with the next
|
||||
ungobbled bit.
|
||||
|
||||
You may wonder: why not just have one lookup table for how ever many bits the
|
||||
longest symbol is? The reason is that if you do that, you end up spending
|
||||
more time filling in duplicate symbol entries than you do actually decoding.
|
||||
At least for deflate's output that generates new trees every several 10's of
|
||||
kbytes. You can imagine that filling in a 2^15 entry table for a 15-bit code
|
||||
would take too long if you're only decoding several thousand symbols. At the
|
||||
other extreme, you could make a new table for every bit in the code. In fact,
|
||||
that's essentially a Huffman tree. But then you spend too much time
|
||||
traversing the tree while decoding, even for short symbols.
|
||||
|
||||
So the number of bits for the first lookup table is a trade of the time to
|
||||
fill out the table vs. the time spent looking at the second level and above of
|
||||
the table.
|
||||
|
||||
Here is an example, scaled down:
|
||||
|
||||
The code being decoded, with 10 symbols, from 1 to 6 bits long:
|
||||
|
||||
A: 0
|
||||
B: 10
|
||||
C: 1100
|
||||
D: 11010
|
||||
E: 11011
|
||||
F: 11100
|
||||
G: 11101
|
||||
H: 11110
|
||||
I: 111110
|
||||
J: 111111
|
||||
|
||||
Let's make the first table three bits long (eight entries):
|
||||
|
||||
000: A,1
|
||||
001: A,1
|
||||
010: A,1
|
||||
011: A,1
|
||||
100: B,2
|
||||
101: B,2
|
||||
110: -> table X (gobble 3 bits)
|
||||
111: -> table Y (gobble 3 bits)
|
||||
|
||||
Each entry is what the bits decode as and how many bits that is, i.e. how
|
||||
many bits to gobble. Or the entry points to another table, with the number of
|
||||
bits to gobble implicit in the size of the table.
|
||||
|
||||
Table X is two bits long since the longest code starting with 110 is five bits
|
||||
long:
|
||||
|
||||
00: C,1
|
||||
01: C,1
|
||||
10: D,2
|
||||
11: E,2
|
||||
|
||||
Table Y is three bits long since the longest code starting with 111 is six
|
||||
bits long:
|
||||
|
||||
000: F,2
|
||||
001: F,2
|
||||
010: G,2
|
||||
011: G,2
|
||||
100: H,2
|
||||
101: H,2
|
||||
110: I,3
|
||||
111: J,3
|
||||
|
||||
So what we have here are three tables with a total of 20 entries that had to
|
||||
be constructed. That's compared to 64 entries for a single table. Or
|
||||
compared to 16 entries for a Huffman tree (six two entry tables and one four
|
||||
entry table). Assuming that the code ideally represents the probability of
|
||||
the symbols, it takes on the average 1.25 lookups per symbol. That's compared
|
||||
to one lookup for the single table, or 1.66 lookups per symbol for the
|
||||
Huffman tree.
|
||||
|
||||
There, I think that gives you a picture of what's going on. For inflate, the
|
||||
meaning of a particular symbol is often more than just a letter. It can be a
|
||||
byte (a "literal"), or it can be either a length or a distance which
|
||||
indicates a base value and a number of bits to fetch after the code that is
|
||||
added to the base value. Or it might be the special end-of-block code. The
|
||||
data structures created in inftrees.c try to encode all that information
|
||||
compactly in the tables.
|
||||
|
||||
|
||||
Jean-loup Gailly Mark Adler
|
||||
jloup@gzip.org madler@alumni.caltech.edu
|
||||
|
||||
|
||||
References:
|
||||
|
||||
[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
|
||||
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
|
||||
pp. 337-343.
|
||||
|
||||
``DEFLATE Compressed Data Format Specification'' available in
|
||||
http://tools.ietf.org/html/rfc1951
|
Loading…
Add table
Add a link
Reference in a new issue